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Abstract
The aim of this work was to investigate how efficiently

colour information is distributed, in a least-redundancy sense,

across the variables of a colour space, and how this distri-

bution varies across different colour spaces. It was found

that among the physiological and psychophysical colour spaces

tested, Derrington-Krauskopf-Lennie space was the most effi-

cient, although this result is contingent on assumptions about the

pre-processing of cone signals. Among the colorimetric spaces

tested, CIECAM02 was the most efficient. For most spaces, the

variables associated with chromatic properties carried more in-

formation than the variables associated with achromatic proper-

ties.

Introduction
There are many different kinds of colour spaces. Some are

based on psychophysical data [1] and others on direct physio-

logical measurements [2, 3] or on physiological theories of opti-

mal signal transmission [4]. These spaces are based typically on

non-opponent and opponent combinations of signals from long-,

medium-, and short-wavelength-sensitive-cones. Analogously,

colorimetric spaces designed to specify or describe colour ap-

pearance [5, 6], are based on non-opponent and opponent combi-

nations of tristimulus values. The presence of opponency in these

representations is not accidental, for it has the effect of increasing

independence, most obviously between responses from long- and

medium-wavelength-sensitive cones. In general, a representation

in which statistical independence between variables is achieved

is called an efficient representation [7]. How efficiently, then,

is colour information distributed across the variables of a given

colour space, and how does this distribution vary across different

colour spaces?

The aim of this work was to address these questions for im-

ages of natural scenes under different daylight illuminants. To

this end, estimates were made, for a given colour space, of the

information preserved between the representation of a scene un-

der one illuminant and the representation of the same scene under

a different illuminant. Information was interpreted in the sense

of Shannon [8, 9], with the principal measure being mutual in-

formation, which quantifies the statistical interdependence of the

colour representations and which is intimately related to colour

constancy. It was found that among the physiological and psy-

chophysical colour spaces tested, Derrington-Krauskopf-Lennie

space [2] was the most efficient, and among the colorimetric

spaces tested, the CIECAM02 space [6] was the most efficient.

A preliminary study of the distribution of colour infor-

mation over non-opponent and opponent variables of CIELAB

space [5] has been previously reported [10], but without analysis

of the interdependencies between variables.

Information-theoretic analysis
All the colour spaces considered here encode spectra in

terms of one non-opponent variable, A say, generally associated

with achromatic properties, and two opponent variables, P and

Q say, generally associated with chromatic properties. Suppose

that, in some colour space, A1 is the non-opponent representa-

tion of a scene illuminated by illuminant 1 and A2 is the repre-

sentation of the same scene illuminated by illuminant 2. If the

probability density functions of A1, A2, and the pair (A1,A2) are

f1(a1), f2(a2), and f (a1,a2), respectively, then the mutual infor-

mation I(A1;A2) between A1 and A2 is given [8, 9] by

I(A1;A2) =

∫∫

f (a1,a2) log
f (a1,a2)

f1(a1) f2(a2)
da2da1 ,

where the integrations are taken over the spaces spanned by A1

and A2. Mutual information is always positive, except when A1

and A2 are independent, i.e. f (a1,a2) = f1(a1) f2(a2), in which

case it is zero. It can be expressed in terms of the differential

entropies associated with each variable, defined [9] e.g. for A1 as

h(A1) = −

∫

f1(a1) log f1(a1) da1 . (1)

Thus,

I(A1;A2) = h(A1)+h(A2)−h(A1,A2), (2)

where h(A1,A2) is the entropy of the pair (A1,A2). The mutual

information between each of the opponent variables P and Q was

defined in exactly the same way.

Mutual information can be extended to the triplets

(A1,P1,Q1) and (A2,P2,Q2) to give for a particular colour

space the total information between the two representations of

a scene under the two illuminants. The total mutual informa-

tion I(A1,P1,Q1;A2,P2,Q2) is denoted here by IAPQ, and the

marginal mutual information I(A1;A2), I(P1;P2), and I(Q1;Q2)
by IA, IP, and IQ, respectively.

An important property of mutual information is that it is

invariant under invertible, differentiable transformations of the

variables involved [11]. This means that if A, P, and Q are de-

fined by invertible transformations of long-, medium-, and short-

wavelength-sensitive-cone responses (or tristimulus values), then

the total information is preserved; otherwise information is lost

[9]. For instance, in [4], A, P, and Q are linearly related to long-,

medium-, and short-wavelength-sensitive cone responses, l, m,

and s. Therefore the total mutual information in (A,P,Q) space

is the same as in (l,m,s) space. Nevertheless, the distribution of

information differs because none of the variables A, P, and Q is

an invertible transformation of any of the variables l, m, and s.

The efficiency of the representation provided by a colour

space depends on the degree of independence of the variables of

that space. This independence can be measured by the multi-

information [12, 13], which is a generalization of mutual infor-

mation and which measures the higher-order dependencies be-

tween the variables of that space. The multi-information for A1,

P1, and Q1 is given by

M(A1;P1;Q1) = h(A1)+h(P1)+h(Q1)−h(A1,P1,Q1), (3)

and analogously for (A2,P2,Q2).



The total mutual information IAPQ between (A1,P1,Q1) and

(A2,P2,Q2) can be factored into the marginal mutual information

IA, IP, and IQ and the multi-information between the variables.

Let RAPQ = M(A1;P1;Q1) + M(A2;P2;Q2) be the redundancy,

defined here as the sum of the multi-information between the

variables for illuminant 1 and for illuminant 2. Thus,

IAPQ = IA + IP + IQ −RAPQ +DAPQ, (4)

where DAPQ = M(A1,A2;P1,P2;Q1,Q2) is the higher-order de-

pendency between the variables. Redundancy RAPQ and higher-

order dependency DAPQ terms are always positive. If the vari-

ables A, P, and Q are independent, then RAPQ = DAPQ = 0, and

IAPQ = IA + IP + IQ.

A similar factorization can be performed across achromatic

and chromatic variables; that is, between the non-opponent vari-

able A and the two opponent variables taken together as, say,

C = (P,Q). Thus,

IAPQ = IA + IC −RAC +DAC. (5)

Methods
The physiological and psychophysical colour spaces con-

sidered here, all based on recoding cone responses at each point

in the image of a scene, were as follows:

1. Derrington-Krauskopf-Lennie (DKL) space [2], as speci-

fied in [14];

2. De Valois and De Valois (DD) space [3];

3. Guth ATD1 (G1) space [1, 15];

4. Guth ATD2 (G2) space [1, 15];

5. Buchsbaum-Gottschalk (BG) space [4].

The colorimetric spaces, all based on the tristimulus values

at each point, were as follows:

1. CIELAB [5],

2. CIELAB [5] after chromatic adaptation using the CAT2000

transform [16],

3. CIECAM02 space [6].

Data for analysis were drawn from 50 hyperspectral images

of natural scenes [17, 18] under three representative daylight

changes with correlated colour temperatures as follows: from

4000 K to 6500 K, from 25,000 K to 6500 K, and from 25,000 K

to 4000 K. These particular daylight illuminants were chosen for

their special role in the CIE specification [5], and were approx-

imated by the CIE method for reconstructing illuminants [19].

The cone responses (l,m,s) or tristimulus values (X ,Y,Z) at each

point in the image of a scene were obtained from the Stockman

and Sharpe cone fundamentals [20] and the CIE 1931 colour-

matching functions [5], respectively. The triplets of responses

or tristimulus values were then transformed to the colour spaces

listed above. All the spaces treated here were taken in their stan-

dard forms and were not adjusted for this particular analysis.

For each scene, daylight change, and colour space, the

marginal and joint entropies, as in (1), were estimated to obtain

the mutual information IA, IP, and IQ as in (2), and the multi-

information terms in RAPQ and DAPQ as in (3). The total mu-

tual information was then obtained with (4). The factorization

in (5) was calculated in an analogous way. A modification of

the Kozachenko-Leonenko estimator of differential entropy [21]

was used for the calculation of marginal and joint entropies. This

involved estimating the entropy after previously whitening the

data, which gave better estimates. Hence, if Var(A,P,Q) is the

variance-covariance matrix of the variables A,P,Q, then the dif-

ferential entropy h(A,P,Q) is given [9] by

h(A,P,Q) = h(A∗,P∗,Q∗)+
1

2
log |Var(A,P,Q)|, (6)

where | · | denotes the determinant of a matrix and





A∗

P∗

Q∗



 = [Var(A,P,Q)]−1/2





A

P

Q



 .

Results and comment
All the colour spaces listed earlier are related to each other

by invertible differentiable transformations, except the Guth G1

and G2 spaces [15]. The total mutual information for these two

spaces will, in general, be smaller than for any other space. Al-

though the existence of an inverse of the CIECAM02 represen-

tation has been reported [6], there are some technical anoma-

lies [22], the most important of which is referred to [23] as the

“brightness problem”, namely, that the calculated brightness may

fail to be a real number. A solution has been proposed [23],

which was adopted here, but it leads to non-invertibility. For-

tunately, the brightness problem occurs rarely in practice, and

was not found here with illuminants with correlated colour tem-

peratures of 4000 K and 6500 K and only rarely with 25,000 K.

Table 1 shows the mean total information estimated for 50

natural scenes and a change in daylight illuminant from a corre-

lated colour temperature of 4000 K to one of 6500 K.

Table 1. Total estimated information from images of natural

scenes under a change in daylight illuminant from a corre-

lated colour temperature of 4000 K to one of 6500 K

Colour space Mean (SD)

Physiological-psychophysical

DKL 19.98 (1.18)

DD 19.98 (1.18)

G1 18.28 (1.24)

G2 18.96 (1.08)

BG 19.98 (1.18)

Colorimetric

CIELAB 20.13 (1.14)

CIELAB CAT2000 20.32 (1.14)

CIECAM02 20.04 (1.02)

The mean total information estimated was closely similar

over all spaces at ∼ 20 bits, except for the G1 and G2 spaces at

∼ 18 and ∼ 19 bits, respectively. As expected, estimates were the

same for DKL, DD, and BG spaces, which are linearly related to

each other. For the illuminant change from a correlated colour

temperature of 25,000 K to one of 6500 K, the estimates were

very similar. For a larger daylight illumination change, from a

correlated colour temperature of 25,000 K to one of 4000 K, the

mean total information estimated was ∼ 3 bits lower.

Figure 1 shows values of the individual quantities IA, IP, IQ,

−RAPQ, and DAPQ in (4) averaged over the 50 scenes under a

change in daylight illuminant from a correlated colour temper-

ature of 4000 K to one of 6500 K. The sum of all the values

for each colour space coincides with the corresponding values in

Table 1.

The least-redundant spaces, that is, those with the lowest

values of RAPQ in (4), were DKL for physiological and psy-

chophysical spaces and CIECAM02 for colorimetric ones, for
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Figure 1. Distribution of information across non-opponent and opponent

variables A, P, and Q within colour spaces for a change in daylight illuminant

from a correlated colour temperature of 4000 K to one of 6500 K. The upper

plot is for physiological and psychophysical colour spaces and lower plot is

for colorimetric spaces. Error bars indicate ±1 SD.
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Figure 2. Distribution of information across achromatic and chromatic

variables A and C within colour spaces for a change in daylight illuminant

from a correlated colour temperature of 4000 K to one of 6500 K. The upper

plot is for physiological and psychophysical colour spaces and lower plot is

for colorimetric spaces. Error bars indicate ±1 SD.

the three illuminant changes considered. That a colour space is

redundant does not imply that there is a loss of information, but

that the interdependencies between variables play an important

role in information [24], indicated in Fig. 1 by the large values of

DAPQ.

Given the broad division between achromatic and chromatic

variables, it is interesting to compare the information for the non-

opponent variable A and the information for the two opponent

variables taken together as C = (P,Q). Figure 2 shows the values

of the individual quantities IA, IC, −RAC, and DAC in (5) aver-

aged over the 50 scenes under a change in daylight illuminant

from a correlated colour temperature of 4000 K to one of 6500

K. In contrast to Fig. 1, the sum of all the values for each colour

space was not exactly equal to the corresponding values in Ta-

ble 1 because, in (5), differential entropies different from those

in (4) were needed, and the estimates were subject to sampling

errors. For most spaces, the chromatic information IC was found

to be larger than the achromatic information IA. In addition, the

information IC was found to be generally larger than the sum of

the marginal information IP + IQ.

Conclusions
The distribution of colour information from natural scenes

across the variables of the colour spaces considered here was

achieved with varying degrees of efficiency. All the spaces dis-

played some degree of redundancy and higher-order dependen-

cies between their variables. The spaces with the least redun-

dancy were Derrington-Krauskopf-Lennie space among physio-

logical and psychophysical colour spaces and CIECAM02 space

among colorimetric spaces. It is emphasized, however, that these

results hold only for the default forms of these spaces. Never-

theless, for most colour spaces, it seems that opponent variables

together carry more information than the non-opponent variable.
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